Electrochemical Etching Technique for Fabricating Tungsten Nanotips

Thomas Bersano
Illinois Wesleyan University

Bruno deHarak, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Physics Commons

https://digitalcommons.iwu.edu/jwprc/2010/posters/8

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
ELECTROCHEMICAL ETCHING TECHNIQUE FOR FABRICATING TUNGSTEN NANOTIPS

Thomas Bersano and Bruno deHarak*
Physics Department, Illinois Wesleyan University

This work will describe an electrochemical etching technique for fabricating sharp metal tips. The tips have diameters between 100-500 nm. I will discuss some of the factors that affect the sharpness of the tips. Tips of this size can be used in scanning tunneling microscopy and atomic force microscopy. Typically these techniques are used to image surfaces with atomic resolution. However, we will use the tips to create short pulses of electrons to study molecular dynamics at short time scales.