Expression, Purification, and Characterization of Porphobilinogen Synthase in *Clostridium perfringens*

Kristina Dakis
Illinois Wesleyan University

David Bollivar, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Biology Commons

Dakis, Kristina and Bollivar, Faculty Advisor, David, "Expression, Purification, and Characterization of Porphobilinogen Synthase in *Clostridium perfringens*" (2010). John Wesley Powell Student Research Conference. 6.
https://digitalcommons.iwu.edu/jwprc/2010/posters2/6

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Clostridium perfringens is the most common cause of gas gangrene, a deadly tissue infection around a skin injury or surgical wound. It also is an agent of foodborne illness in the United States. Analysis of porphobilinogen synthase (PBGS) in C. perfringens may reveal useful information about an important control point in the metabolism of this human pathogen. PBGS plays a major role in the biosynthesis of natural tetrapyrrrole pigments essential to most life forms. Also known as δ-aminolevulinic acid dehydratase, it catalyzes the condensation of two molecules of δ-aminolevulinic acid (ALA) to form porphobilinogen (PBG). This tetrapyrrrole pigment is a precursor to heme, a molecule important to cellular respiration. In this study, host Escherichia coli cells were transformed with an expression plasmid containing the C. perfringens PBGS gene. Gene expression was induced and various purification techniques were used to isolate the enzyme. Activity assays lead to initial steps in characterization.