Expression of Cranial Neural Crest Genes in *Moenkhausia sanctaefilomenae*

Harirajan Mani
Illinois Wesleyan University

Brian Walter, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Biology Commons

https://digitalcommons.iwu.edu/jwprc/2010/posters/20

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Neural crest cells are multipotent embryonic cells that migrate from their origins and populate various sites in the embryo. In the head, the cranial neural crest cells (CNC), migrate ventrally to differentiate into cartilage and bones that form the craniofacial skeleton. Several genes are thought to be involved in this process by controlling cell specification, cell survival, and cell migration/differentiation (Kuriyama & Mayor 2007). Our research examines the expression of CNC genes such as Foxd3, Collagen IIa1, Snail 1, Snail 3, and Faciogenital Dysplasia (FGD) in Moenkhausia sanctaefilomenae. Via the process of whole mount in situ hybridization, the gene expressions were analyzed. At various developmental stages, specific genes have distinct patterns of expression that change over time. Also, during the same developmental time frame, different genes have different expression domains. These results suggest the differing roles for genes during the development of cranial neural crest cells.