Electrochemical Assay of Specific Biological Compounds Using Scanning Electrochemical Microscopy

Thomas Marlow
Illinois Wesleyan University

Aaron Moore
Illinois Wesleyan University

Melinda Baur, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the [Chemistry Commons](http://digitalcommons.iwu.edu/jwprc)

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
ELECTROCHEMICAL ASSAY OF SPECIFIC BIOLOGICAL COMPOUNDS USING SCANNING ELECTROCHEMICAL MICROSCOPY

Thomas Marlow, Aaron Moore, and Melinda Baur*
Chemistry Department, Illinois Wesleyan University

Scanning Electrochemical Microscopy (SECM) is a useful tool for analysis of biological samples because it is capable of detecting both the topography of the cell surface as well as release of electrochemically active compounds. A fabricated ultramicroelectrode controlled by the SECM was used to scan across the cell surface at a constant distance. The constant distance from the cell was maintained by using a feedback loop that measured the impedance between the tip of the electrode and the reference electrode. Because the topography of the cell could be determined by recording the movement of the electrode in response to impedance measurements, the potential of the electrode could be set to measure specific oxidations or reductions occurring at the cell surface. The SECM has been used to successfully combine characterization of cell topography with simultaneous electrochemical evaluation of the cell surface. Release of electrochemically active compounds from the cell surface has been detected by changes in the current measured at the tip of the ultramicroelectrode. The goal of this project is to develop an electrochemical assay to detect specific molecules on the cell surface using the SECM.