Effects of Temperature on the Intracapsular Embryonic Development of the Freshwater Gastropod *Physa Acuta*

Alyssa Ray
Illinois Wesleyan University

William Jaeckle, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Biology Commons

https://digitalcommons.iwu.edu/jwprc/2010/posters/15

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
EFFECTS OF TEMPERATURE ON THE INTRACAPSULAR EMBRYONIC DEVELOPMENT OF THE FRESHWATER GASTROPOD _PHYSA ACUTA_

Alyssa Ray and William Jaeckle*
Biology Department, Illinois Wesleyan University

Temperature is an important factor regulating the growth and development of organisms. I studied the effect of temperature on the development of the freshwater gastropod _Physa acuta_. Egg capsules from thirteen separate egg masses were isolated and distributed among three environmental temperatures (22°C, 25°C, and 28°C) and checked daily. Capsule and juvenile dimensions and hatching time were recorded for each egg capsule. Data analysis confirmed that increased temperature had a significant acceleratory effect on embryonic developmental rate for all egg masses. In 85% of the egg masses temperature also had a significant and positive effect on juvenile snail size, but no influence on shell shape. When all data were pooled, juvenile length and juvenile volume were not correlated with capsule size ($r > 0.03$, $p = 0.65$), but hatch day was negatively related to capsule size ($r = -0.18$, $p = 0.007$). Among egg capsule size groups, average hatch day and juvenile size were significant different ($p < 0.001$) among temperatures treatments. Data analysis of the larger group revealed the same observed effects of temperature as those described previously, when all egg masses were considered. Analysis of the smaller group, however, indicated no significant difference in days to hatching between 22°C and 25°C, though each was significantly less than that at 28°C. Additionally, a significant difference in both juvenile length and juvenile volume was found between 22°C and 28°C for this group, although neither temperature was significantly different from 25°C.