Synthesis of a Thirty Member Macrocycle for Use in Host-Guest Chemistry

Keith A. Lehuta
Illinois Wesleyan University

Rebecca Roesner, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Chemistry Commons

Lehuta, Keith A. and Roesner, Faculty Advisor, Rebecca, "Synthesis of a Thirty Member Macrocycle for Use in Host-Guest Chemistry" (2011). John Wesley Powell Student Research Conference. 15.
https://digitalcommons.iwu.edu/jwprc/2011/posters/15

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
Polyamine and mixed polyamine/polyamide macrocycles have been widely used as hosts for anion recognition. Although numerous cyclic and polycyclic hosts for halides, sulfates, phosphates, and carboxylates have been described, few macrocycles large enough for polyoxometalate binding are readily available. A polyoxometalate is a large polyatomic anion composed of early transition metal atoms, oxygen atoms, and sometimes heteroatoms. In this work, a thirty-membered macrocycle that contains amine groups (Figure 1) is being prepared as a host for polyoxometalate guests. The two part synthetic strategy being employed makes use of high dilution techniques and was first reported by Korendovych et. al for a related macrocycle. Under neutral conditions, the amine groups of the macrocycle may be able to interact with the polyoxometalate through ion-dipole forces and/or hydrogen bonds. Under acidic conditions, the amine groups would be protonated, and the resulting ammonium groups may interact with the polyoxometalate through ion-ion forces and/or hydrogen bonds.