Coulomb Blockade Effects in Mesoscopic Electronic Devices

Janak Thapa
Illinois Wesleyan University

Qing Ding
Illinois Wesleyan University

Gabriel C. Spalding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Thapa, Janak; Ding, Qing; and Spalding, Faculty Advisor, Gabriel C., "Coulomb Blockade Effects in Mesoscopic Electronic Devices" (2012). John Wesley Powell Student Research Conference. 7.
http://digitalcommons.iwu.edu/jwprc/2012/posters2/7

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
COULOMB BLOCKADE EFFECTS IN MESOSCOPIC ELECTRONIC DEVICES

Janak Thapa, Qing Ding, and Gabriel C. Spalding*
Physics Department, Illinois Wesleyan University

In our research, we aim to examine the Coulomb blockade, where all electron current is suppressed below a (tunable) threshold voltage. This thresholding effect occurs because of the energy required for charging individual nanoparticles, and so our devices can become sensitive to single-electron transport between droplets. In our approach, two liquid-metal (gadolinium) droplets, which are coated with a monolayer of ligand-stabilized (gold) nanoparticles, were brought into contact. They do not coalesce but instead remain separated by the nanoparticles assembled at the interface. Micrometer-scale Ga droplets coated with nanoparticles were fabricated using ultrasonication and then deposited on substrates with patterned interdigitated electrodes, to form mesoscopic electronic devices. Right now, we working to lower the threshold voltage, and hope to eventually produce gated devices (self-assembling single-electron transistors).