Coulomb Blockade Effects in Mesoscopic Electronic Devices

Janak Thapa  
*Illinois Wesleyan University*

Qing Ding  
*Illinois Wesleyan University*

Gabriel C. Spalding, Faculty Advisor  
*Illinois Wesleyan University*

Follow this and additional works at: [https://digitalcommons.iwu.edu/jwprc](https://digitalcommons.iwu.edu/jwprc)

---

Thapa, Janak; Ding, Qing; and Spalding, Faculty Advisor, Gabriel C., "Coulomb Blockade Effects in Mesoscopic Electronic Devices" (2012). *John Wesley Powell Student Research Conference*. 7.  
[https://digitalcommons.iwu.edu/jwprc/2012/posters2/7](https://digitalcommons.iwu.edu/jwprc/2012/posters2/7)

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.  
©Copyright is owned by the author of this document.
In our research, we aim to examine the Coulomb blockade, where all electron current is suppressed below a (tunable) threshold voltage. This thresholding effect occurs because of the energy required for charging individual nanoparticles, and so our devices can become sensitive to single-electron transport between droplets. In our approach, two liquid-metal (gadolinium) droplets, which are coated with a monolayer of ligand-stabilized (gold) nanoparticles, were brought into contact. They do not coalesce but instead remain separated by the nanoparticles assembled at the interface. Micrometer-scale Ga droplets coated with nanoparticles were fabricated using ultrasonication and then deposited on substrates with patterned interdigitated electrodes, to form mesoscopic electronic devices. Right now, we working to lower the threshold voltage, and hope to eventually produce gated devices (self-assembling single-electron transistors).