Hypoxia-Ischemia in the Immature Brain and Mechanisms of Reducing Tissue Damage

Victoria Simmons
Illinois Wesleyan University

Susan Vannucci, Faculty Advisor
Weill Cornell Medical College

Edgar Lehr, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Simmons, Victoria; Vannucci, Faculty Advisor, Susan; and Lehr, Faculty Advisor, Edgar, "Hypoxia-Ischemia in the Immature Brain and Mechanisms of Reducing Tissue Damage" (2012). *John Wesley Powell Student Research Conference*. 18.
https://digitalcommons.iwu.edu/jwprc/2012/posters/18

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Hypoxia-ischemia (HI) in the Immature Brain and Mechanisms of Reducing Tissue Damage

Victoria Simmons and Susan Vannucci*
Department of Newborn Medicine, Weill Cornell Medical College, New York, NY 10065

Introduction
Stroke can occur in individuals of all age groups and presents a clinical challenge in terms of the damage to brain tissue that it causes. One precipitator for stroke is a hypoxic-ischemic event.

Hypoxia refers to a partial lack of oxygen in the tissues of the body; ischemia is a reduction or cessation of blood flow. The extent of tissue damage is influenced by the location of the injury and the age and developmental stage at which the insult occurs. Damage ranges from selective neuronal necrosis, involving only a number of cells, to infarction, the death of all of the cells in a tissue. A model using young rats has been developed to study the course of perinatal hypoxic-ischemic brain damage, as well as pretreatments to reduce that damage. The 7-day-old rat brain is considered to be analogous to the brain of a 32–36-week-old human infant. In our experiments, we induced hypoxia-ischemia in neonatal rats to observe the effects on the brain; in later experiments, we evaluated the protective effect of hypoxic preconditioning.

Clinical Implications
Statistics from 2000 suggest that incidences of hypoxic-ischemic encephalopathy (HIE) occur in up to 1-6/1000 full-term infants and up to 60% of low-birth-weight (premature) infants. Of those newborns affected by HIE, 50-80% survive the newborn period, and of those that survive, 25% will exhibit permanent neurological handicaps, including spastic motor deficits (cerebral palsy), mental retardation, learning disability, and epilepsy. Infants affected by HIE also show retardation in the growth of brain weight and the age and developmental stage at which the insult occurs. Damage ranges from selective neuronal necrosis, involving only a number of cells, to infarction, the death of all of the cells in a tissue. A model using young rats has been developed to study the course of perinatal hypoxic-ischemic brain damage, as well as pretreatments to reduce that damage. The 7-day-old rat brain is considered to be analogous to the brain of a 32–36-week-old human infant. In our experiments, we induced hypoxia-ischemia in neonatal rats to observe the effects on the brain; in later experiments, we evaluated the protective effect of hypoxic preconditioning.

Materials & Methods

- Litters of Wistar breed rats were randomized at postnatal day 0 (P0) and were reduced to 10 individuals to ensure that all of the pups received adequate nutrition and gained weight accordingly.
- At P7, the pups underwent permanent unilateral carotid artery ligation to induce cerebral ischemia. After an hour of recovery, the pups were subjected to systemic hypoxia in an incubation chamber with a gas composition of 8% oxygen/92% nitrogen (normoxia is 21% oxygen).
- At P14, the animals were sacrificed, and their brains retrieved and frozen. The brains were sliced by a cryostat in 6um coronal sections. We stained brain slices with hematoxylin and eosin, which stains cellular proteins and nuclei.

Conclusions

- Typically, tissue damage occurred with a frequency and severity related to the duration of hypoxia, i.e. HI of longer duration resulted in more brain damage and infarction than did HI of shorter duration. These results were in accord with previously conducted studies.
- Damage scores allowed researchers to compare neurological abnormalities between control and hypoxia-treated groups. Fig. 3 shows that more preconditioned animals had lower damage scores, and more control animals had higher damage scores. These data suggest that preconditioning with hypoxia before a severe hypoxic-ischemic event might reduce the ultimate brain damage.
- Hypoxic preconditioning is thought to provide protection via several different pathways. First, hypoxia stimulates transcription factors to alter gene expression, leading to increased production of red blood cells and blood vessels. These changes lead to increased oxygen carrying capacity, which staves off tissue damage during a subsequent hypoxic event. Another method by which preconditioning might provide protection is the increased production of glycogen (the storage form of glucose). The newly synthesized glycogen acts as an energy reserve during the subsequent hypoxic event, preventing the depletion of high-energy reserves (namely ATP and phosphocreatine) and protecting the animals from secondary energy failure.