How Chemistry Students Learn in an Inquiry-Based Classroom

Kayla Mahoney
Illinois Wesleyan University

Leah Nillas, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc


This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
Inquiry-Based Learning in the Chemistry Classroom
Kayla Mahoney and Leah A. Nillas*
Educational Studies, Illinois Wesleyan University

Research Question
How do chemistry students learn in an inquiry-based classroom?

Literature Review
- Research studies and literature reviews focused on the definition of inquiry-based learning, inquiry-based learning in action, and how to implement an inquiry-based classroom.
- Inquiry-based classrooms featured in the studies allowed students to confront problems, generate and test ideas for themselves, and apply them to new problem situations.
- Students make better connections and become more engaged in the material in that it becomes more meaningful when they are able to pose the questions. More time can be spent in the classroom exploring concepts and developing skills.

Methodology
- The study took place at an urban high school in Central Illinois. Participants were sophomores and juniors in three general-level chemistry classes.
- Six inquiry-based lessons were implemented over the course of 4 weeks.
- Teacher reflection journals, lesson plans, and student work were collected.
- Data was analyzed using Marchewicz and Wink’s (2011) Active Model of Inquiry Framework.

Results and Data Analysis
- Inquiry-based learning renders students thinking towards higher-order and critical thinking skills.
- Questions asked by students were directed towards higher-order thinking skills.
- Students were more engaged in inquiry-based activities and remained on task.
- Inquiry-based activities involved students to verbally communicate their findings and investigations as part of the learning process.
- Students designed and implemented inquiry-based investigations to arrive to their own conclusions.

Conclusion
- Chemistry students learn in an inquiry-based classroom by formulating questions, developing investigations, and analyzing results.
- Findings supported Marshall and Horton’s (2011) research outcomes which stated that students were more frequently involved in a higher cognitive thinking level when participating in inquiry-based activities.
- For future research, it is important to implement more inquiry-based lessons over a longer period of time.