Expression of Gene Product 126 from Phage Gizmo and Creation of a Substrate

Manish Mandava
Illinois Wesleyan University

David Bollivar, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc
Part of the Biology Commons

https://digitalcommons.iwu.edu/jwprc/2014/posters2/15

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Introduction

Endonucleases are enzymes which cleave phosphodiester bonds in the backbone of nucleic acids such as DNA. Homing endonucleases (HEases) are a group of endonucleases that are site-specific, mobile, and persistent genetic elements. HEases are a large and diverse class of nucleases found in the genomes of archaea, bacteria, eukarya, and viruses. As a result of the homing process, HEases are able to propagate their self-splicing genes into recipient alleles that lack such genes. This process is initiated by the expression of a homing endonuclease gene (HEG) which results in a HEase. The HEase then goes on to cleave a target site in a homolog of the hosting gene to induce a homologous recombination event, and thereby transforming the vacant homolog into a HEG (Figure 1). The ability of HEases to initiate and target specific sequences along a genome and effectively propagate their HEG throughout a genome allows for HEases to be possible reagents for gene targeting, DNA modification, and genome editing.

It is predicted that gene product 126gp126) from the mycobacteriophage Gizmo encodes a HEase. To test whether the gene encodes a HEase, the phage sequence of gp126 Gizmo was transferred into the his-tag containing plasmid PET14b. The protein was expressed and purified. The mycobacteriophage Shrimp was utilized as a substrate to test the predicted function and evaluate possible target sequences of the HEase derived from gp126. A long term goal is to define the recognition sequence for this homing endonuclease.

Results

Transfer of gp126 into pET14b

- **T5 Promoter**
 - pJexpress
 - Gp126_gizmo
 - Xho1
 - Nde1
- **T7 Promoter**
 - pET14b
 - Gp126_gizmo
 - Xho1
 - Nde1

Gp126 Expression

1) Creation of Expression plasmid
2) Transformation of pET14b-gp126 into Tuner(DE3) via heat shock method
3) Growth of E.coli colonies grown in LB media
 - Cells induced with isopropyl β-D-1-thiogalactopyranoside (IPTG)
4) Protein gel electrophoresis (Figure 2)

His tag purification

1) Collection of protein aliquots (Figure 3)

Progressive Collection of Purified Protein

Conclusions

From our initial step we have established that the predicted homing endonuclease gene (gp126) from the bacteriophage Gizmo can be inserted into the plasmid vector (pET14b). With our second project we were able to understand the optimal time of induction and subsequent expression of gp126 inside the pET14b plasmid vector. Following expression we took advantage of the his-tag region on the pET14b vector in order to purify the HEase enzyme. The final step in our research was to clone the homing endonuclease in order to determine the optimal conditions for the HEase to tolerate sequence degeneracy within the recognition site.

Further Work

Further work would be to utilize the isolated homing endonuclease in order to determine binding and cleavage sites. This would involve determining the optimal conditions for the HEase enzyme(s) and substrate. With knowledge of binding and cleavage sites, the goal would then be to understand the efficacy of the HEase to tolerate sequence degeneracy within the recognition site.

Literature cited

Acknowledgments

- Illinois Wesleyan University Ames Library
- Illinois Wesleyan Departments of Chemistry and Biology
- Cindy Honegger (Stock Room Manager, Center for Natural Sciences, IWU)