Apr 11th, 6:00 PM - 7:00 PM

Snails? Incorporating the Nature of Science and Primary Literature into the High School Biology Classroom

Elizabeth Smith
Illinois Wesleyan University

Jeanne Koehler, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the Education Commons

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Incorporating the Nature of Science and Primary Literature into the High School Biology Classroom
Elizabeth Smith

Methodology

Research Questions:
1. How does the nature of science benefit high school biology students? How do I incorporate the nature of science in the high school biology classroom?
2. Is the use of primary resources in the high school biology classroom beneficial to students?

The nature of science includes aspects of the origin, nature, methods, and limits of human knowledge in the science classroom. Emphasis was placed on hands-on experiments and primary literature because these two areas incorporate many aspects of the nature of science.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Purpose</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
<td>Background information about Physa acuta</td>
<td>Read a section from “The Ecology of Freshwater Molluscs.” Look at examples of laboratory notebooks.</td>
</tr>
<tr>
<td>Part 2</td>
<td>How to collect and safely cut egg masses</td>
<td>Collect early-stage embryos (recently laid egg masses). Record when each snail hatched at each temperature. Students will conduct new trials about once a week.</td>
</tr>
<tr>
<td>Part 3</td>
<td>Compile data</td>
<td>Create graphs, posters, etc., and come to conclusions about how temperature effects the development of Physa acuta. Students are encouraged to ask questions and think critically about the article. Use a variety of methods to present findings. Compare to those of the scientific research article read in class.</td>
</tr>
</tbody>
</table>

Table 1 A unit plan was created to test the effect of temperature on the development of Physa acuta, a species of freshwater snail (figure 1). This unit plan incorporates hands-on experiments as well as primary research articles. The unit plan is divided into three parts. In the first section, students will learn about Physa acuta as well as proper scientific procedures. In the second section, students will be conducting trials (figure 2). In the third section students will compile their data and present their findings.

Literature Review

By incorporating hands-on experiments, students are able to retain more information (Handler & Duncan, 2006). Hands-on experiments allow students to learn and comprehend more information than they otherwise would have by taking notes in a classroom (Mulkerrin & Hill, 2013). Incorporating primary resources into the high school biology classroom allows students to ask more in-depth, thought-provoking questions (Yarden, Brill, and Falk, 2001, 2003).

Figure 1 Adult Physa acuta. Image from: http://www.fwgna.org/

Table 1

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Day 1</th>
<th>Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 °C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26 °C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 Pictures of Physa acuta egg masses were taken daily to analyze the effects of temperature on the development of the egg masses. The pictures display an individual embryo within a capsule. There are multiple capsules within each egg mass. Day 1 pictures represent egg masses that were less than 24 hours old when they were cut and photographed. Therefore the two capsules are at the same developmental stage. The masses were then placed in either 20°C or 26°C incubators. It is clear that after four days, the mass in the 26°C has developed faster than the mass in the 20°C incubator. Scale bars = 200µm