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Multidecomposition of complete graph into graph pair
of order 6

Yizhe Gao 1 Dan Roberts2

Department of Mathematics
Illinois Wesleyan University

Bloomington, IL 61701

1 Abstract

We find both necessary condition and sufficient condition for (C6, C6)multidecomposition of
complete graph

2 Introduction

Here are basic definitions of graph theory. Let G and H be graphs. Denote the vertex set
of G by V (G) and the edge set of G by E(G). The degree of a graph vertex V of a graph G
is the number of graph edges which touch V. We say that G is connected if there is a path
from any vertex in G to any other vertex in G. An isolated vertex is a vertex with degree of
zero. The union of two graphs G = (VG, EG) and H = (VH , EH) is the union of their vertex
and edge sets: G ∪H = (VG ∪ VH , EG ∪ EH)

Let Kn denote the complete graph on n vertices. The complete graph on n vertices,
denoted Kn, is the graph on n vertices such that every pair of distinct vertices has exactly
one edge between them. Let Cm denote the cycle with m vertices. A cycle on n vertices
containing a single cycle through all vertices. Given graph G on n vertices, define G as the
graph with n vertices such that E(G) = E(Kn)/E(G) when considering G as a subgraph of
VG = VH . In other words, Cm is the complement of Cm to Kn.

Given graphs G and H, a G−decomposition of H is a set {G1,G2,...,Gt} of edge-disjoint
subgraphs of H such that

⋃t
i=1E(Gi) = E(H) and Gi

∼= G for every i ∈ {1, ..., t}. If a
G − decomposition of H exists, then we say that G decomposes H or H decomposes into
copies of G.

A (G,H) − multidecomposition of Kn is a set S = {S1, S2, S3,...,St} of edge-disjoint
subgraphs of Kn such that

⋃t
i=1E(Si) = E(Kn), Si

∼= G or Si
∼= H for every i ∈ {1,...,t}.

and at least one copy of G and one copy of H are included in S. Let G and H be edge-
disjoint connected spanning subgraphs of Kn. We call (G,H) a graph pair of order n if
E(G) ∪E(H) = E(Kn). Multidecompositions of complete graphs into graph pairs of orders
4 and 5 have been studied, and the following results were obtained. Denote the graph
consisting of two vertex-disjoint edges by 2K4.

Theorem 2.1 (Abueida and Daven [?]). There is a (C4, 2K2)-multidecomposition of Km if
and only if m≡ 0, 1 (mod 4) (m ≥ 4,m 6= 5)
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Figure 1: The graph pairs of order 5.

Theorem 2.2 (Abueida and Daven [?]). There is a (Gi, Hi)-multidecomposition of Km for
m ≥ 5 if and only if

1. when i ∈ {1, 3, 4}, m ≡ 0, 1 (mod 4) (except when i = 1 and m = 8);

2. when i = 2,m ≡ 0, 1 (mod 5);

3. when i = 5,m 6= 6, 7;

In this paper, we investigate multidecompositions of complete graphs of order 6. In partic-
ular, we find necessary and sufficient conditions for the existence of a (C6,C6)-multidecomposition
of Kn. Our main result is as follows.

Theorem 2.3. The complete graph Kn admits a (C6,C6)-multidecomposition of Kn if and
only if n ≡ 0, 1, 3, 4 (mod 6) with n ≥ 6, except n ∈ {7, 9, 10}, and possibly except n = 19.

Let G and H be vertex-disjoint graphs.The join of G and H, denoted G ∨H, is defined
to be the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {{u, v} : u ∈
V (G), v ∈ V (H)}. We use the shorthand notation

∨t
i=1Gi to denote G1 ∨ G2 ∨ · · · ∨ Gt,

and when Gi
∼= G for all 1 ≤ i ≤ t we write

∨t
i=1G. For example, K12

∼=
∨4

i=1K3. Let
(a0, a1, ..., an−1) denote the cycle on n vertices with vertex set {a0, a1, ..., an−1} and edge set
{{ai, ai+1}|i = 0, 1, ..., n − 2} ∪ {{a0, an−1}}. Let [a,b,c;d,e,f] denote the graph with vertex
set {a,b,c,d,e,f} and edge set

{{a, b}, {b, c}, {a, c}, {d, e}, {e, f}, {d, f}, {a, d}, {b, e}, {c, f}}.

Notice that [a,b,c;d,e,f] is isomorphic to C6.
Next, we introduce some results on graph decompositions that will help us prove our

main result. Sotteau’s theorem can be used to decompose bipartite graphs into even length
cycles.

Theorem 2.4 (Sotteau [?]). A C2k-decomposition of Km,n exists if and only if m ≥ k,
n ≥ k, m and n are both even, and 2k divides mn.

Specifically, we use Sotteau’s theorem to obtain C6-decompositions of complete bipartite
graphs.
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Corollary 2.5 (Sotteau [?]). A C6-decomposition of Km,n exists if and only if m ≥ 3, n ≥ 3,
m and n are both even, and 6 divides mn.

A celebrated result in the field of graph decompositions is that the necessary conditions
for a Ck-decomposition of Kn are also sufficient. Here we state the result only for k = 6.

Theorem 2.6 (Alspach et al. [?]). Let n be a positive integer. A C6-decomposition of Kn

exists if and only if n ≡ 1 or 9 (mod 12).

The necessary and sufficient conditions for a C6-decomposition of Kn are also known,
and stated in the following theorem.

Theorem 2.7 (Kang et al. [?]). Let n be a positive integer. A C6-decomposition of Kn

exists if and only if n ≡ 1 (mod 9).

Now, we define a type of graph labeling which will help to construct certain graph de-
compositions. A σ-labeling of a graph G on n edges is a one-to-one function f : V (G) →
{0, ..., 2n} such that the set of induced edge labels given by |f(u)− f(v)|, for every {u, v} ∈
E(G), forms the set {1, 2, . . . , n}. In 1967, Rosa introduced graph labelings as a means to
find graph decompositions. The connection between σ-labelings and graph decompositions
is apparent in the following theorem, which follows directly from results in [?].

Theorem 2.8. (A.Rosa [?]) Let G be a graph on n edges. If G admits a σ-labeling, then a
cyclic G-decomposition of K2n+1 exists.

3 Main Result

Lemma 3.1. Let n ≥ 2 be an integer. If n ≡ 2 or 5 (mod 6) then 3 does not divide
(
n
2

)
.

Proof. Let n ≥ 2 be an integer.
Case 1: n ≡ 2 (mod 6). Let n = 6x+ 2 for some positive integer x. Then we have(

n

2

)
=

(6x+ 2)(6x+ 1)

2
= 18x2 + 9x+ 1 ≡ 1 (mod 3).

Thus, 3 does not divide
(
n
2

)
.

Case 2: n ≡ 2 (mod 6). Let n = 6x+ 2 for some positive integer x. Then we have(
n

2

)
=

(6x+ 5)(6x+ 4)

2
= 18x2 + 27x+ 10 ≡ 1 (mod 3).

Thus, 3 does not divide
(
n
2

)
.

Lemma 3.2. Necessary conditions for the existence of a (C6,C6)-multidecomposition of Kn

are

1. n ≥ 6, and

2. n ≡ 0, 1, 3, 4 (mod 6).
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Proof. Let n ≥ 0 be an integer.
Case 1: n ≡ 0 (mod 6). Let n = 6x for some positive integer x. Then we have(

n

2

)
=

(6x)(6x− 1)

2
= 18x2 − 3x ≡ 0 (mod 3).

Thus, 3 divides
(
n
2

)
.

Case 2: n ≡ 1 (mod 6). Let n = 6x+ 1 for some positive integer x. Then we have(
n

2

)
=

(6x+ 1)(6x)

2
= 18x2 + 3x ≡ 0 (mod 3).

Thus, 3 divides
(
n
2

)
.

Case 3: n ≡ 3 (mod 6). Let n = 6x+ 3 for some positive integer x. Then we have(
n

2

)
=

(6x+ 3)(6x+ 2)

2
= 18x2 + 15x+ 3 ≡ 0 (mod 3).

Thus, 3 divides
(
n
2

)
.

Case 4: n ≡ 4 (mod 6). Let n = 6x+ 4 for some positive integer x. Then we have(
n

2

)
=

(6x+ 4)(6x+ 3)

2
= 18x2 + 21x+ 6 ≡ 0 (mod 3).

Thus, 3 divides
(
n
2

)
.

Lemma 3.3. No (C6,C6)-multidecomposition of K7 exists.

Proof. Note that K7 has 21 edges. Therefore, for a (C6,C6)-multidecomposition of K7 to
exist, there must exist positive integers x and y such that 21 = 6x+ 9y. The only possibility
is x = 2 and y = 1. This implies that a (C6,C6)-multidecomposition of K7 must contain
exactly one copy of C6.

Notice that the degree of every vertex inK7 is 6. Therefore, for a (C6,C6)-multidecomposition
of K7 to exist, there must exist positive integers p and q such that 6 = 2p + 3q. The only
possibilities are (p, q) ∈ {(3, 0), (0, 2)}. Since a (C6,C6)-multidecomposition of K7 requires
at least one copy of C6, there must exist at least one vertex in K7 that is contained in 2
copies of C6. This is a contradiction to the fact that such a multidecomposition must contain
exactly one copy of C6.

Lemma 3.4. No (C6,C6)-multidecomposition of K9 exists.

Proof. Note that K9 has 36 edges. Therefore, for a (C6,C6)-multidecomposition of K9 to
exist, there must exist positive integers x and y such that 36 = 6x+ 9y. The only possibility
is x = 3 and y = 2. This implies that a (C6,C6)-multidecomposition of K9 must contain
exactly two copies of C6.

Notice that the degree of every vertex inK9 is 8. Therefore, for a (C6,C6)-multidecomposition
of K9 to exist, there must exist positive integers p and q such that 8 = 2p + 3q. The only
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possibilities are (p, q) ∈ {(4, 0), (1, 2)}. Since a (C6,C6)-multidecomposition of K9 requires
exactly two copies of C6, so there must exist at least one vertex a ∈ V (K9) that is contained
in exactly one copy of C6. However, this contradictions the fact that vertex a must be
contained in either 0 or 2 copies of C6.

Lemma 3.5. No (C6,C6)-multidecomposition of K10 exists.

Proof. Note that K10 has 45 edges. Therefore, for a (C6,C6)-multidecomposition of K9

to exist, there must exist positive integers x and y such that 45 = 6x + 9y. The only
possibilities are (x, y) ∈ {(6, 1), (3, 3)}. This implies that a (C6,C6)-multidecomposition of
K9 must contain at least one C6. However, if such a multidecomposition consisting of exactly
one copy of C6 existed, then the vertices which are not included in this copy would have odd
degrees remaining after the removal of the copy of C6. Thus, the case where (x, y) = (6, 1)
is impossible.

Notice that the degree of every vertex inK10 is 9. Therefore, for a (C6,C6)-multidecomposition
of K10 to exist, there must exist positive integers p and q such that 9 = 2p + 3q. The only
possibilities are (p, q) ∈ {(3, 1), (0, 3)}.

Assume we have a (C6,C6)-multidecomposition, G, of Kn. Let A,B,C ∈ G with A ∼=
B ∼= C ∼= C6. Let X = V (A) ∩ V (B). It must be the case that |X| ≥ 2 since K10 has 10
vertices. It also must be the case that |X| ≤ 5 since K6 does not contain two copies of C6.

If |X| ∈ {2, 3}, then V (C)∩ (V (A)4 V (B)) 6= ∅. This implies that there exists a vertex
in V (Kn) that is contained in exactly 1 copy of C6 in G, which is a contradiction.

Now, we make the observations that any set of either 4 or 5 vertices in C6 must induce at
least 3 or 6 edges, respectively. Furthermore, the vertices in X must necessarily be contained
in V (C) due to the degree constraints put in place by the existence of G. If |X| = 4 or |X| = 5,
then X must induce at least 9 or at least 18 edges, respectively. This is a contradiction.
Thus, no such G exists.

Lemma 3.6. If n ≡ 0 (mod 6) with n ≥ 6, then Kn admits a (C6,C6)-multidecomposition.

Proof. Let n = 6x for some integer x ≥ 1. Note that K6x
∼=
∨x

i=1K6. On each copy of K6

place a (C6, C6)-multidecomposition of K6. The remaining edges form edge-disjoint copies
of K6,6, which admits a C6-decomposition by Corollary ??. Thus, we obtain the desired
(C6, C6)-multidecomposition of Kn.

Lemma 3.7. If n ≡ 1 (mod 6) with n ≥ 13, then Kn admits a (C6,C6) -multidecomposition
except possibly when n = 19.

Proof. First, we need two building blocks for our general constructions. Let V (K13) =
{1, 2, . . . , 19}. The following is a (C6,C6)-multidecomposition of K13.

{[1, 2, 3; 7, 0, 8], [1, 4, 5; 9, 12, 10], [3, 4, 6; 7, 11, 10], [2, 5, 6; 8, 12, 11]}
∪ {[13, 1, 6, 8, 5, 11], [13, 2, 3, 5, 9, 4, 10], [13, 3, 5, 9, 4, 10],

[13, 7, 12, 3, 9, 6], [13, 8, 10, 2, 7, 5], [13, 9, 11, 1, 8, 4]}

The second building block is a C6-decomposition of K19. It is known (see Theorem ??) that
such a decomposition exists. However, here we provide a cyclic C6-decomposition of K19.
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Figure 2: A σ-labeling of C6.

The labeling provided in Figure ?? is a σ-labeling of C6. Thus, by Theorem ?? there exists
a cyclic C6-decomposition of K19.
Let n = 6x+ 1 for some integer x ≥ 2.
Case 1: x = 2k for some k ≥ 1. Notice that K12x+1

∼= K1 ∨
(∨k

i=1K12

)
. On each of the

k copies of K13 formed by K1 ∨ K12, we place a (C6, C6)-multidecomposition of K13. The
remaining edges form edge-disjoint copies of K12,12. On each of the copies of K12,12 we place
a C6-decomposition of K12,12, which is known to exist by Corollary ??. Thus, we obtain the
desired (C6, C6)-multidecomposition of Kn.
Case 2: x = 2k + 1 for some k ≥ 2. Notice that K12x+7

∼= K1 ∨K6 ∨
(∨k

i=1K12

)
. On the

copy of K19 formed by K1 ∨K6 ∨K12, we place a cyclic C6-decomposition of K19. On the
remaining k−1 copies of K13 formed by K1∨K12, we place a (C6, C6)-multidecomposition of
K13. The remaining edges form edge-disjoint copies of either K6,12 or K12,12. Both of these
graphs admit C6-decompositions by Corollary ??. Thus, we obtain the desired (C6, C6)-
multidecomposition of Kn.
We note that this proof does not provide a (C6, C6)-multidecomposition of K19. It is not
known whether such a multidecomposition exists.

Lemma 3.8. K15 admits a (C6,C6) -multidecomposition.

Proof. Let V (K15) = A ∪ B ∪ C where A = {Ai : 0 ≤ i ≤ 4}, B = {Bi : 0 ≤ i ≤ 4}, and
C = {Ci : 0 ≤ i ≤ 4}. Also let

E(K15) = {{Xi, Xj} : X ∈ {A,B,C} and 0 ≤ i < j ≤ 4}
∪ {{Xi, Yj} : X, Y ∈ {A,B,C}, X 6= Y, and 0 ≤ i ≤ j ≤ 4}.

Notice that the edges of K15 are of one of two types, either both endpoints are in one of
A,B, or C, or the endpoints come from different sets. We wish to define the difference of an
edge, and this definition depends on which type of edge is under consideration. Consider an
edge of the form e = {Xi, Xj} where X ∈ {A,B,C}, and let d = min{|i− j|, 5−|i− j|}. We
define the difference of e to be dX , and we refer to differences of this type as pure differences.
Now, consider an edge of the form e = {Xi, Yj} where X 6= Y , and let d = |j − i|. Assume
that (X, Y ) is of one of the forms (A,B), (B,C), or (A,C). We define the difference of e
to be dXY , and we refer to differences of this type as mixed differences. Thus, K15 consists

6



of the set of pure differences {1X , 2X : X ∈ {A,B,C}} and the set of mixed differences
{iXY : 0 ≤ i ≤ 4 and XY ∈ {AB,BC,AC}}.

If G is a subgraph of K15, then applying the permutation i 7→ i + 1 (mod 5) to the
subscripts of the vertices of G produces a different subgraph G′ which is isomorphic to G
and has the same differences as G. Therefore, to obtain a (C6, C6)-multidecomposition of
K15 it suffices to specify a set of edge-disjoint subgraphs in K15 which are isomorphic to
either C6 or C6, contain at least one of each, and partition the set of differences of K15.
Since K15 has 21 differences, we are lead to produce 2 edge-disjoint copies of C6 and 1 copy
of C6. The copies are as follows.

Figure 3: A labeling of (C6, C6)-multidecomposition of K15

The set of subgraphs obtained by applying the permutation i 7→ i + 1 (mod 5) 4 times to
each subgraph above will produce the desired (C6, C6)-multidecomposition of K15.

Lemma 3.9. If n ≡ 3 (mod 6) with n ≥ 15, then Kn admits a (C6,C6) -multidecomposition.

Proof. Case 1: x = 2k for some k ≥ 1.
Notice that K6x+3

∼= K1 ∨K14 ∨
(∨k−1

i=1 K12

)
. On each of the k − 1 copies of K13 formed

by K1 ∨ K12, we place a (C6, C6)-multidecomposition of K13. On the copy of K15 formed
by K1 ∨K14 we place a (C6, C6)-multidecomposition of K15 constructed in Lemma ??. The
remaining edges form edge-disjoint copies of K12,12 and a K12,14. Both of these complete
bipartite graphs admit C6-decompositions by Corollary ??. Thus, we obtain the desired
(C6, C6)-multidecomposition of Kn.
Case 1: x = 2k+ 1 for some k ≥ 1. Notice that K6x+3

∼= K1∨K8∨
(∨k

i=1K12

)
. On each of

the k copies of K13 formed by K1 ∨K12, we place a (C6, C6)-multidecomposition of K13. By
Theorem ??, K9 admits a C6-decomposition. The remaining edges form edge-disjoint copies
of K8,12 and a K12,12. Both of these complete bipartite graphs admit C6-decompositions by
Corollary ??. Thus, we obtain the desired (C6, C6)-multidecomposition of Kn.
We note that this proof does not provide a (C6, C6)-multidecomposition of K19. It is not
known whether such a multidecomposition exists.

Lemma 3.10. If n ≡ 4 (mod 6) with n ≥ 16, then Kn admits a (C6,C6) -multidecomposition.

Proof. First, we need two building blocks for our general constructions.
Let V (K10) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The following is a (C6,C6)-multidecomposition of
K10.

{[1, 2, 10; 6, 5, 7], [2, 3, 4; 8, 9, 10], [3, 7, 8; 5, 9, 4], [2, 6, 9; 7, 4, 1], [3, 6, 10; 1, 8, 5]}.
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Let n = 6x + 4 where x ≥ 2 is an integer. Note that K6x+4
∼= K10 ∨

(∨x−1
i=1 K6

)
. On

the copy of K10 place a C6-decomposition of K10 found above. On each copy of K6 place
a (C6,C6) -multidecomposition. The remaining edges form edge-disjoint copies of K6,6 and
K6,10. Both of these complete bipartite graphs admit C6-decompositions by Corollary ??.
Thus, we obtain the desired (C6, C6)-multidecomposition of Kn.

4 Conclusion

According to the necessary and sufficient conditions, we are able to conclude that Kn admits
a (C6, C6)-multidecomposition if and only if n ≡ 0, 1, 3, 4 (mod 6) and n ≥ 6 except for
n ∈ {7, 9, 10}, and possibly except for n = 19. We will continue to study if K19 allows a
(C6,C6) multidecomposition in the future.
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