Instrumentation for Determining Prebiotic Species in the Interstellar Medium

Lydia Rudd
Illinois Wesleyan University

Ben Lamm
Illinois Wesleyan University

Kevin Roenitz
Illinois Wesleyan University

Manori Perera, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the [Chemistry Commons](https://digitalcommons.iwu.edu/jwprc), and the [Education Commons](https://digitalcommons.iwu.edu/jwprc)

Rudd, Lydia; Lamm, Ben; Roenitz, Kevin; and Perera, Faculty Advisor, Manori, "Instrumentation for Determining Prebiotic Species in the Interstellar Medium" (2016). *John Wesley Powell Student Research Conference*. 2.
https://digitalcommons.iwu.edu/jwprc/2016/oralpres6/2

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
We are building an instrument to study the gas phase reaction dynamics of astronomically relevant molecular species, specifically the reactions of ions with neutral molecules. With this instrument, we plan to study the branching ratios of product channels under a variety of temperatures, pressures, and external photon energies that adequately simulate the conditions of the interstellar medium (ISM). The data will allow us to (1) identify new species that are stable under ISM conditions and (2) understand the reaction dynamics of ion-neutral reactions since these are known to drive the chemistry of the ISM. The particular ions – such as HCN+, HCO+ and C_3 H_3+ – that we propose to study are important for prebiotic and carbon chemistry in space. The instrument consists of 3 stages: (1) a dual channel ion source (2) a liquid nitrogen cooled ion trap with optional laser and (3) a time-of-flight mass spectrometer. The progress of the instrument will be presented.