Thermal Modeling of a Millimeter Wavelength Light Detector

Fiona Breyer
Illinois Wesleyan University

Thushara Perera, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the [Education Commons](https://digitalcommons.iwu.edu/education), and the [Physics Commons](https://digitalcommons.iwu.edu/physics)

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
THERMAL MODELING OF A MILLIMETER WAVELENGTH LIGHT DETECTOR

Fiona Breyer and Thushara Perera*
Physics Department, Illinois Wesleyan University

The overall goal of this research is to study the emission and absorption of millimeter-wavelength light by samples of cosmic dust analogs at astronomically interesting temperatures (5-50 Kelvin). During the first two cooldowns of a newly refurbished cryostat (refrigerator), we successfully reached an internal temperature of 4 Kelvin. We used this opportunity to obtain preliminary data on the bolometer, a millimeter-wavelength light detector. The information we obtained serves as a calibration of the bolometer and will be useful for interpreting data on cosmic dust samples which will be taken in the future. Using the acquired data, a thermal model of the bolometer was created. Using a separate data set, we were able to perform limited tests on this thermal model. Presented here is how we arrived at the bolometer thermal model and how we have tested it thus far.