Changes in EEG Brain Activity during Physical and Social Pain Assessment in Chronic Pain Patients Undergoing Spinal Cord Stimulation (SCS) Therapy

Nitesh Kumar
Illinois Wesleyan University

Randi Wilson
Illinois Wesleyan University

Joseph Williams, Faculty Advisor
Illinois Wesleyan University

David Cedeno, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Education Commons, and the Psychology Commons

Kumar, Nitesh; Wilson, Randi; Williams, Faculty Advisor, Joseph; and Cedeno, Faculty Advisor, David, "Changes in EEG Brain Activity during Physical and Social Pain Assessment in Chronic Pain Patients Undergoing Spinal Cord Stimulation (SCS) Therapy" (2016). John Wesley Powell Student Research Conference. 11.
https://digitalcommons.iwu.edu/jwprc/2016/posters2/11

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
CHANGES IN EEG BRAIN ACTIVITY DURING PHYSICAL AND SOCIAL PAIN ASSESSMENT IN CHRONIC PAIN PATIENTS UNDERGOING SPINAL CORD STIMULATION (SCS) THERAPY

Nitesh Kumar, Randi Wilson and Joseph Williams* and David Cedeno*
Psychology Department, Illinois Wesleyan University

Spinal Cord Stimulation (SCS) therapy is an effective method of using electricity to treat chronic pain when other therapies, including invasive surgical interventions, have failed. In SCS, stimulating electrode arrays (called leads) are implanted epidurally inside the spinal canal above the dorsal aspect of the spinal cord through a minimally invasive, reversible surgical procedure. The application of safe levels of electrical current to the dorsal portion of the spinal cord is known to provide an analgesic effect, reducing pain in patients by 68% compared to their initial pain levels. SCS improves patients’ functional and psychological status, enables patients to return to work, and reduces patients’ reliance on opioid pain medication. While SCS has a clear therapeutic effect, the exact neural mechanism behind the analgesic effects of SCS remains poorly understood. Other studies have shown consistent changes in frontal and parietal cortex brain activity during both physical and social pain. The present study recorded electroencephalogram (EEG) brain activity to examine the neural mechanisms associated with both social and chronic physical pain in subjects currently undergoing SCS therapy. EEG is a common technique used in psychological and medical research to record the firing of brain cells (through an electrode cap placed over the scalp) during various behavioral states. This is the first study to examine changes in EEG brain patterns in SCS patients for both physical and social pain. Understanding the neural mechanism behind SCS therapy can lead to refinements in SCS procedures and potentially increase the efficacy of the treatment and, in turn, the quality of life of patients who suffer from chronic pain conditions.