Restoration of Heterocyst Production to a ΔHETP Strain of \textit{Anabaena}

Megan Smeets
\textit{Illinois Wesleyan University}

Loralyn Cozy, Faculty Advisor
\textit{Illinois Wesleyan University}

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the \textit{Biology Commons}, and the \textit{Education Commons}
RESTORATION OF HETEROCYST PRODUCTION TO A ΔHETP STRAIN OF ANABAENA

Megan Smeets and Loralyn Cozy*
Biology Department, Illinois Wesleyan University

Anabaena sp. Strain PCC 7120 is a filamentous cyanobacterium capable of differentiating a nitrogen-fixating cell type called a heterocyst. The *hetP* gene has been identified as being required for the normal magnitude and timing of heterocyst formation. Where as a wild type strain produces 10% heterocysts in 23 hours, a ΔhetP strains produces only 2-3% heterocysts in 48 hours. How the loss of *hetP* leads to this phenotype is currently unknown. To identify genes downstream of *hetP* in the differentiation pathway that could be aiding in its function during heterocyst formation we performed a forward genetic screen. A Tn5 transposon was introduced via conjugation into a ΔhetP strain and plated on nitrogen deficient media with selection. Surviving colonies were assayed for restoration of wild-type heterocyst accumulation and timing of development. The DNA of these strains was isolated and the transposon location was identified. We demonstrated a class of genes whose inactivation is capable of restoring wild-type heterocyst formation in the absence of *hetP*. Future work will examine the function of these genes in relation to *hetP*.