2-(51, 6, 1) Block Designs

Wenting Zhao
*Illinois Wesleyan University*

Mark Liffiton. Faculty Advisor

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Computer Sciences Commons

https://digitalcommons.iwu.edu/jwprc/2017/oralpres8/1

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This material has been accepted for inclusion by faculty at The Ames Library at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
A graph decomposition problem is a classical problem in combinatorics that involves breaking a large graph into small identical pieces. Mathematicians have a long history working on this type of problem, but many of the problem instances still remain unsolved. The major difficulty is that the search space for an answer is usually massive; to check every potential solution manually would take more than a lifetime (or the lifetime of the universe, even!). In this work, we are interested in looking at this old problem in a new way -- we explore it from a computational perspective. Computers are known to be great at doing repetitive tasks -- can we come up with a procedure for a computer to follow, or, say, encode the problem in a way a computer can understand, so that we could use a computer to solve it? We addressed the above questions by translating the graph decomposition problem into the Boolean Satisfiability Problem (SAT), a well-studied problem in computer science. Many efficient algorithms have been proposed in the past two decades. We explore whether the recent advances in the field enable us to solve more unknown cases in the graph decomposition problem.