Post-Stroke Behavioral Deficits in Mice: Two Models Compared

Cayla Dole
Illinois Wesleyan University

Emma Haan
Illinois Wesleyan University

Victoria Nemchek
Illinois Wesleyan University

Rachel Mavros
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc

Part of the Psychology Commons

https://digitalcommons.iwu.edu/jwprc/2017/posters2/7

This Event is protected by copyright and/or related rights. It has been brought to you by Digital Commons @ IWU with permission from the rights-holder(s). You are free to use this material in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This material has been accepted for inclusion by faculty at The Ames Library at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
Stroke is a leading cause of disability worldwide. Though current rehabilitative strategies improve quality of life for patients, they do not promote full functional recovery. Improving rehabilitation requires a better understanding of the mechanisms that underlie stroke injury and recovery; these questions are best explored in animal models. The current study directly compared behavioral outcome in two mouse models of ischemic stroke (vasoconstriction via endothelin-1 (ET-1) and photothrombosis). Sixteen mice were trained preoperatively on a reaching task to establish skilled motor performance. Mice then received ischemic stroke using one of the two methods. All strokes were administered to the forelimb representation area of motor cortex in order to disrupt performance of the previously trained motor skill. Beginning four days after surgery, mice were assessed for reaching proficiency daily for 14 days. Mice receiving photothrombotic lesions broke significantly fewer pasta pieces than mice receiving ET-1 lesion. Our results suggest that photothrombotic lesions result in greater behavioral deficits than ET-1 lesions. One common finding with rodent models of stroke, especially when induced by ET-1, is that animals exhibit spontaneous recovery that complicates interpretations of results. Our data suggest that photothrombotic stroke may be a better model of long-term behavioral deficit that could circumvent some of these issues.