Fostering Engagement Through Inquiry-Based Learning

Lauren Zanoni
Illinois Wesleyan University

Follow this and additional works at: https://digitalcommons.iwu.edu/jwprc
Part of the Education Commons

Zanoni, Lauren, "Fostering Engagement Through Inquiry-Based Learning" (2109). John Wesley Powell Student Research Conference. 7.
https://digitalcommons.iwu.edu/jwprc/2019/ESposters/7
Fostering Engagement in Inquiry-Based Learning
Lauren Zanoni and Leah Nillas*
Educational Studies, Illinois Wesleyan University

Research Question
What is the impact of inquiry-based learning (IBL) experiences on student engagement?

Literature Review
- As highlighted by Wurdinger et al. (2007), IBL can align with STEM (building bridges) or focus on presenting research (informative posters). In a version of IBL called Genius Hour, students research a passion and create a product (Juliani, 2007).
- The authentic work students complete in these versions of IBL, as well the opportunities for choice and autonomy in research (Genius Hour), have the power to boost overall engagement (Rotgans & Schmidt, 2011).
- IBL builds 21st century skills, including: innovation, problem-solving, collaboration, and communication. Using these skills requires students to be invested in learning, a positive group member, and value overall success in the task.
- Students form a joint-problem-solving-space (JPSS) by being behaviorally and cognitively engaged (Gomoll et al., 2017). By sharing design goals, negotiating authority, and listening to each others’ contributions, students progress through IBL in a productive way.
- Although group cohesiveness is central to IBL, students may still be engaged in select parts of the inquiry process, such as writing plans, making the project, or presenting (Wurdinger, et al., 2007).

Methodology
- Participants include 22 fifth graders (10-11 yrs. old). They engaged in 3 categories of IBL: Genius Hour, content area inquiry, and Challenger Learning Center (CLC).
- Field notes, class photos, and work samples document students’ reactions to IBL and interactions with others.
- Data was analyzed along the engagement theory of Fredricks, Blumenfeld, and Paris (2004). Cognitive engagement refers to investment in learning, behavioral engagement involves students’ positive conduct with others and activities, and emotional engagement is the value attributed to the task, their peers, and overall success.

Figure 1. For Design a Space Alien, 7 of the 8 groups used (optional) craft materials to symbolize their alien’s accommodations or their planet’s atmosphere. Students similarly valued the benefits extra research could have on their poster, as 6 of the 8 groups used more than required secondary sources (Sullivan & Bers, 2008).

Results and Data Analysis
- Strong attainment and utility value during Genius Hour. Emotional engagement is evident in students’ research of a past discovery, current hobby, or dream job.
- Emotional engagement encourages attentiveness and reflection. Students thoughtfully kept their audience behaviorally engaged during their presentations by posing rhetorical questions, speaking to their peers as equally interested learners, and logically organizing their research.
- The increased cognitive demand in content area inquiry and CLC can lower behavioral engagement. Some students struggled to respectfully collaborate and exchange ideas, which led to in-group fighting, the decreased effort and interest of group members uninvolved in the conflict, and an unrealized JPSS. (Figure 2 presents an exception to this finding).
- Students need time to learn and practice skills (i.e. collaboration, communication) needed for self-regulated learning in order to be cognitively engaged. In their CLC self-evaluations, students reported areas of struggle as: reading closely, suppressing distractions, monitoring the quality of their work.
- During content area inquiry and CLC, students were cognitively engaged as they reflected on prior knowledge or used outside learning (Love, et al., 2015). Students used analogies to choose accommodations for space aliens and understand new concepts (e.g. acids/bases, line graphs, space probes, aquifers).

Conclusion
- Emotional, behavioral, and cognitive engagement are subject to context and experienced to varying degrees among students. Before implementing an IBL activity, educators should consider what additional supports or practice could facilitate students’ future engagement.
- While valuable, CLC is an expensive out-of-classroom IBL experience. Future research is needed to uncover low-cost, and short-term classroom applications of IBL that still provide authentic inquiry opportunities.