Apr 23rd, 9:00 AM - 4:00 PM

Polyelectrolyte Gels as Artificial Muscle Systems

Garrett Davis
Illinois Wesleyan University

Kimberly Branshaw
Illinois Wesleyan University

Dana Deardorff
Illinois Wesleyan University

Narendra K. Jaggi, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
POLYELECTROLYTE GELS AS ARTIFICIAL MUSCLE SYSTEMS

Garrett Davis, Kimberly Branshaw, Dana Deardorff,
and Narendra K. Jaggi
Physics Department, Illinois Wesleyan University

During the last three years, electromotility of polyelectrolyte gels in ionic solutions has been aggressively pursued at Toyota and Ibaraki Univ. as potential futuristic chemomechanical engines. We have discovered that the underlying physics is much more complex than what has previously been believed, e.g. we find that bending as a function of time seems to obey a $t^{0.5}$ power law, is inconsistent with the idea of a bending speed and strongly points toward a diffusion mechanism. Kinetic evidence of diffusion was confirmed by experiments on gels grown in the presence of dyes. We have explored the effect of varying poly-ion concentration in the backbone and in the surrounding medium. We have discovered that in some cases, the electromotility cannot be described as simple bending. We have also discovered a rich behavior in the electrical conductivity of these complex materials. Unfortunately, this is not yet understood. Light scattering experiments are also under way.

Acknowledgment: This research was supported in part by a grant (# NAG-8-258) from NASA under the NASA/JOVE program