Apr 12th, 1:30 PM - 2:30 PM

Cheerio-Cheerio Interactions in a Milk Matrix

Thomas Davidsmeier
Illinois Wesleyan University

Matthew Dearing
Illinois Wesleyan University

Gabe Spalding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Davidsmeier, Thomas; Dearing, Matthew; and Spalding, Faculty Advisor, Gabe, "Cheerio-Cheerio Interactions in a Milk Matrix" (1997). John Wesley Powell Student Research Conference. 22.
http://digitalcommons.iwu.edu/jwprc/1997/posters/22

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Poster Presentation 26

CHEERIO-CHEERIO INTERACTIONS IN A MILK MATRIX

Thomas Davidsmeier, Matthew Dearing and Gabe Spalding*,
Department of Physics, IWU

The presence of an intervening medium can create or alter interactions between suspended objects. Super conducting metals are a perfect example of this type of behavior on the nanoscopic scale. The crystal lattice of the metal vibrates in such a way that a net attraction between electrons is created. Outside of the medium, these electrons would repel one another. This project studied a macroscopic model system consisting of two cheerios floating in milk. An interaction between cheerios in milk was well known to cereal eaters. Outside the milk, the cheerios experience no significant attraction. Attempts to determine the length scale of the cheerio-cheerio interaction were made, as well as attempts to describe how the interaction varies with distance. Theoretical explanations were found for the attractive interaction as well as torques on individual cheerios observed during the experiment.