Apr 15th, 2:00 PM - 3:00 PM

Synthesis of Difunctional Isocyanates and Subsequent Reaction with the Hexamolybdate Anion

Delara Godrej
Illinois Wesleyan University

Rebecca Roesner, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Godrej, Delara and Roesner, Faculty Advisor, Rebecca, "Synthesis of Difunctional Isocyanates and Subsequent Reaction with the Hexamolybdate Anion" (2000). *John Wesley Powell Student Research Conference*. 22.

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
The attachment of organic molecules to polyoxometalates has led to the development of a variety of interesting compounds. Modification of the organic substituents attached to polyoxometalates may enable the specific targeting of biological macromolecules within diseased cells. Molecules of this type are already being used as selective markers for conventional electron microscopy and have been shown to exhibit anti-viral activity. These compounds are also expected to have utility as oxidation catalysts and anti-tumoral agents.

Our research involves the synthesis and characterization of the polyoxometalate complex \([\text{Bu}_4\text{N}]_4[(\text{Mo}_5\text{O}_{18})\text{Mo}_5\text{N}=\text{Z}-\text{N}=\text{Mo}(\text{Mo}_5\text{O}_{18})]\) where \(Z = -(\text{C}_6\text{H}_4)\text{O}(\text{CH}_2)3\text{O}(\text{C}_6\text{H}_4)\). The synthesis of the difunctional isocyanate linker \(\text{OCN}-(\text{C}_6\text{H}_4)\text{O}(\text{CH}_2)3\text{O}(\text{C}_6\text{H}_4)-\text{NCO}\) has recently been achieved. Subsequent plans include reacting the diisocyanate with two equivalents of \(n\)-butylammonium hexamolybdate to obtain the target molecule.