Optical Trapping in Novel Geometries

Andrea Bulkley
Illinois Wesleyan University

Jason Forster
Illinois Wesleyan University

Debo Olaosebikan
Illinois Wesleyan University

Gabriel C. Spalding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Bulkley, Andrea; Forster, Jason; Olaosebikan, Debo; and Spalding, Faculty Advisor, Gabriel C., "Optical Trapping in Novel Geometries" (2004). John Wesley Powell Student Research Conference. 1.
http://digitalcommons.iwu.edu/jwprc/2004/oralpres3/1
Optical forces are being used in novel applications that span from cell sorting to studying the physical principles of DNA to alleviating the bottleneck in the internet. We describe the design and calibration of a flexible optical trapping set-up, which will allow us to compare the absolute magnitude of forces in conventional and non-conventional optical geometries. In particular, we discuss the interaction of micro-particles with conventional optical tweezers and with three-dimensional optical lattices.