Apr 12th, 9:00 AM - 10:00 AM

Linking Polyoxometalates With Amide Bonds

Joseph B. Binder  
*Illinois Wesleyan University*

Emilia Poppe  
*Illinois Wesleyan University*

Rebecca A. Roesner, Faculty Advisor  
*Illinois Wesleyan University*

---

Follow this and additional works at: [http://digitalcommons.iwu.edu/jwprc](http://digitalcommons.iwu.edu/jwprc)

[http://digitalcommons.iwu.edu/jwprc/2003/posters/7](http://digitalcommons.iwu.edu/jwprc/2003/posters/7)

---

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
LINKING POLYOXOMETALATES WITH AMIDE BONDS

Joseph B. Binder, Emilia Poppe, and Rebecca A. Roesner*
Department of Chemistry, Illinois Wesleyan University

Polyoxometalates (POMs) of the Keggin structure, \([XM_{12}O_{40}]^{n-}\), are large metal-oxygen anions. One type, the un adecatungstophosphate lacunary Keggin ion (\([PW_{11}O_{39}]^{7-}\)) has one fewer W-O unit than the usual Keggin ion, leaving a hole into which another metal atom can be inserted. In previous work, we inserted a rhodium atom with a carboxylate ligand into the vacancy and reacted this product with aniline to form an amide.

In the current work, the amide-forming reaction has been attempted with a diamine \((H_{2}NPhOC_{3}H_{6}OPhNH_{2})\). With two amine groups on the same molecule, two carboxylate groups on two polyoxometalates can form amide bonds with the same amine, tethering the two POMs together. The products of these reactions have been characterized spectroscopically.

Keggin ion with rhodium-carboxylate adduct occupying vacancy