Microfluidic Device Fabrication for Optical Micromanipulation

Michael Berry
Illinois Wesleyan University

Ryan Smith
Illinois Wesleyan University

John van Fleet, Jr
Illinois Wesleyan University

Brian Simonds
Illinois Wesleyan University

Gabriel C. Spalding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Berry, Michael; Smith, Ryan; van Fleet, Jr, John; Simonds, Brian; and Spalding, Faculty Advisor, Gabriel C., "Microfluidic Device Fabrication for Optical Micromanipulation" (2004). John Wesley Powell Student Research Conference. 5.
http://digitalcommons.iwu.edu/jwprc/2004/posters/5
MICROFLUIDIC DEVICE FABRICATION FOR OPTICAL MICROMANIPULATION

Michael Berry, Ryan Smith, John van Fleet, Jr., Brian Simonds, and Gabriel C. Spalding*
Department of Physics, Illinois Wesleyan University

Integrated "lab-on-a-chip" technologies require the development of miniaturized fluidic devices. We discuss fabrication, control, and performance issues pertinent to the use of microfluidic devices that incorporate optical sieves, for sorting and separating particles of varying size, shape, and molecular structure. The goal of this project is to improve the design of all-optical sorting devices and to address issues associated with microfluidic control. Towards that end, we will examine basic physical considerations appropriate to the microfluidic regime.