Adaptive Optics for Dynamic Optical Traps

Olukayode Karunwi
*Illinois Wesleyan University*

Ryan Smith
*Illinois Wesleyan University*

Gabriel Spalding, Faculty Advisor
*Illinois Wesleyan University*

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Holographic Optical Tweezers were first demonstrated by Fournier, et al., using a commercial hologram. A complete recipe for making tailored, planar arrays of optical traps using Diffractive Optical Elements (DOE) was laid out in the IWU – Univ. of Chicago collaboration, “Computer-Generated Holographic Optical Tweezer Arrays.” While this original “HOT” recipe dealt with two-dimensional arrays, several generalizations have been demonstrated which extend the basic method to three-dimensions. That said, three-dimensional studies remain in their infancy. Furthermore, even for lower-dimensional arrays, both errors in the DOE and aberrations in the optical system can compromise trap performance. We will report on our progress in using a Programmable Phase Modulator (an optically addressable DOE) to provide a reconfigurable, self-calibrating DOE, and to correct for aberrations. Our approach involves modifying the “HOT” algorithm in order to provide a feedback mechanism between the input optical array and output optical array.