Determining the Composition of the Colony Tubes of Pterobranchs

Andrew McDonald
Illinois Wesleyan University

Tyler Saunders
Illinois Wesleyan University

Elizabeth Balser, Faculty Advisor
Illinois Wesleyan University

Lukasz Sewera
Illinois Wesleyan University

Follow this and additional works at: _http://digitalcommons.iwu.edu/jwprc_

Part of the _Biology Commons_

McDonald, Andrew; Saunders, Tyler; Balser, Faculty Advisor, Elizabeth; and Sewera, Lukasz, "Determining the Composition of the Colony Tubes of Pterobranchs" (2011). _John Wesley Powell Student Research Conference_. 16.
http://digitalcommons.iwu.edu/jwprc/2011/posters/16

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
DETERMINING THE COMPOSITION OF THE COLONY TUBES
OF PTEROPRANCHS

Lukasz Sewera, Andrew McDonald, Tyler Saunders, and Elizabeth Balser*
Biology Department, Illinois Wesleyan University

Pterobranchs are a group of marine invertebrates within the Hemichordata. The hemichordates share characteristics with both chordates and echinoderms. Some aspects of pterobranch phylogeny are still unclear even after multiple molecular and morphological studies. Identification of any new shared characteristics with either group would be valuable information in determining clearer relationships between these groups. Pterobranchs live in colonies of secreted tubes, which are composed of a gelatinous material of unknown composition. Visually, the tubes appear similar to the tunic of tunicates, a group of invertebrates within the Chordata. The tunic of tunicates is composed of cellulose, not protein which is characteristic of marine and other animals. In this study, our goal was to determine the composition of the pterobranch dwelling tubes. We used purification methods, staining and microscopy to study the structure and properties of the tube material. To date, our results indicate that the tube material is primarily protein.