Apr 14th, 2:35 PM - 3:35 PM

A Multimode Fluorescent Microscope

Boxiang Liu
Illinois Wesleyan University

Nathaniel Nesbit
Illinois Wesleyan University

Gabriel Spalding, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Liu, Boxiang; Nesbit, Nathaniel; and Spalding, Faculty Advisor, Gabriel, "A Multimode Fluorescent Microscope" (2012).
John Wesley Powell Student Research Conference. 11.
http://digitalcommons.iwu.edu/jwprc/2012/posters2/11
Confocal Microscopy

In a conventional wide-field microscope, thick specimens will produce an image that represents the sum of sharp image details from the in-focus region, combined with blurred images from all the out-of-focus regions. As a result, a specimen having a thickness greater than three to five microns will produce an image in which most of the light is contributed by the regions that are not in exact focus.

In confocal microscopy, a point-light light source (laser) is focused by an objective onto a sample. The spatial extension of the focus spot on the sample is determined by the wavelength the numerical aperture of the lens, and the quality of the image formation. The image spot is then focused through the same lens onto a pinhole and onto a detector. This pinhole is situated at a plane where the light from the in-focus part of the image converges to a point. Light from object planes above or below that of the focused images do not converge at the pinhole and hence is mostly blocked by it. (Paras N. Prasad, Introduction to Biophotonics)

Research Directions

Photoluminescence blinking—random switching between states of high (ON) and low (OFF) emissivities—is a universal property of molecular emitters found in dyes, polymers, biological molecules and artificial nanostructures such as nanocrystal quantum dots, carbon nanotubes and nanowires. For the past 15 years, colloidal nanocrystals have been used as a model system to study this phenomenon. However, this model was recently challenged in several reports (Galland C., Ghosh Y., et al, 2011).

This microscope is designed to further investigate the quantum dot blinking phenomenon.

Total Internal Reflection Microscopy

When a beam of light propagates from one medium to another, at the interface, refraction would occur at a small incidence angle. But when the angle of incidence exceeds a value \(\theta_c \), the critical angle, the light beam is reflected from the interface, a process called total internal reflection (TIR). The critical angle \(\theta_c \) is given by the equation:

\[
\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)
\]

Even under the condition of TIR, a portion of the incident energy penetrates the prism surface. This penetrating light is termed an evanescent wave, whose electromagnetic field decays rapidly. This decay is described as

\[
E_z = E_0 \exp\left(-\frac{z}{d_p}\right)
\]

where \(E_z \) is the electromagnetic field amplitude, \(E_0 \) is the electromagnetic field at the interface, \(z \) is the distance into the sample, parameter \(d_p \) is the penetrating depth constant, which is given as

\[
d_p = \lambda / \left(2\pi n_1 \sin^2 \theta \left(\frac{n_2}{n_1}\right)^\frac{1}{2}\right)
\]

The rapid decaying nature of the evanescent light ensures that only the near-surface specimen generates fluorescence. This also limits any light-induced damage to the cell viability. (Paras N. Prasad, Introduction to Biophotonics)