Apr 12th, 9:00 AM - 10:00 AM

Decomposing Complete Graphs into a Graph Pair of Order 6

Yizhe Gao
Illinois Wesleyan University

Daniel Roberts, Faculty Advisor
Illinois Wesleyan University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc
Part of the Applied Mathematics Commons

Gao, Yizhe and Roberts, Faculty Advisor, Daniel, "Decomposing Complete Graphs into a Graph Pair of Order 6" (2014). John Wesley Powell Student Research Conference. 9.
http://digitalcommons.iwu.edu/jwprc/2014/posters/9

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.
©Copyright is owned by the author of this document.
Decomposing complete graphs into a graph pair of order 6

Purpose:
Decomposing K_n into a particular graph pair of order 6.

Definition:
Graph: A graph G is a triple consisting of a vertex set $V(G)$, an edge set $E(G)$, and a relation that associates with each edge two vertices called its end points.

A complete graph is a graph in which each pair of graph vertices is connected by an edge.

The complement of a graph G is the graph with the same vertex set by whose edge set consists of the edges not present in G.

A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one subgraph in the list.

A graph pair of order n is a pair of connected graphs on n vertices with no isolated vertex whose union is K_n. In this case, we will use C_6 and its complement to decompose K_n.

A Proof
By simple algebra, necessary conditions for a multidecomposition of K_n into C_6 and \hat{C}_6 are $n=0, 1, 3, 4 \mod 6$. Then, we want to show that these conditions are sufficient by constructing a multidecomposition in each case.

1) Show that K_n can be decomposed into C_6 and its complement if $n=0 \mod 6$.

In this case, K_n can be seen as the union of many K_6 s connected with $K_{6,6}$ s. K_6 s can be decomposed into C_6 s and their complements (one copy in each). We need to show that $K_{6,6}$ s can also be decomposed into C_6 s or its complement. By Sotteau's theorem, $K_{6,6}$ can be decomposed into C_6 s. Hence, since K_n can be decomposed into C_6 and its complement when $n=0 \mod 6$, the decomposition exists when $n=0 \mod 6$.

2) Show that K_n can be decomposed into C_6 and its complement when $n=3 \mod 6$.

First, we can take a look at some small examples of K_n when $n=3 \mod 6$. For example, are we able to show that K_9 can be decomposed into graph pair of order 6?

By edge condition, since K_9 must have at least one complement, there are $36-9=27$ edges left. After doing some simple algebra, I find that the decomposition can only exist if there are 3 more C_6 s and one \hat{C}_6 in K_9.

Then, we need to see whether the decomposition above exists given the degree condition. Each vertex of K_9 must have degree of 8. Since we have already removed one C_6 complement, 6 vertices have degree of 5 left. However, since a C_6 removes 2 degrees from each vertex and $5/2$ is not an integer, it is not true that K_9 can be decomposed into graph pair of order 6 since some vertices only have degree of 5 left.

Current Result
K_n can be decomposed into graph pair consisting of C_6 s and their complements if n is 0 mod 6. Also, K_9 can not be decomposed in that way.

Future Study:
I will try to test the sufficient conditions for the decomposition of K_n if $n=1, 3$ and 4 mod 6.