Dendritic Cell Phagocytosis in C57BL/6 IL-10-/- and C57BL/6 Wild Type Mice and Implications for Guillain-Barré Syndrome Pathology

Jenna Baker
Illinois Wesleyan University

Brian Walter, Faculty Advisor
Illinois Wesleyan University

Linda Mansfield, Faculty Advisor
Michigan State University

Follow this and additional works at: http://digitalcommons.iwu.edu/jwprc

Part of the Education Commons, and the Psychology Commons

Baker, Jenna; Walter, Faculty Advisor, Brian; and Mansfield, Faculty Advisor, Linda, "Dendritic Cell Phagocytosis in C57BL/6 IL-10-/- and C57BL/6 Wild Type Mice and Implications for Guillain-Barré Syndrome Pathology" (2016). John Wesley Powell Student Research Conference. 1. http://digitalcommons.iwu.edu/jwprc/2016/posters2/1

This Event is brought to you for free and open access by The Ames Library, the Andrew W. Mellon Center for Curricular and Faculty Development, the Office of the Provost and the Office of the President. It has been accepted for inclusion in Digital Commons @ IWU by the faculty at Illinois Wesleyan University. For more information, please contact digitalcommons@iwu.edu.

©Copyright is owned by the author of this document.
Guillain-Barré Syndrome (GBS) is a polyneuropathy affecting the peripheral nervous system, characterized by high anti-ganglioside autoantibodies and nerve lesions, that occurs after exposure to an infectious agent, such as the bacterium Campylobacter jejuni (C. jejuni). C. jejuni 11168 is capable of colonizing the gastrointestinal tracts of interleukin (IL)-10-deficient C57BL/6 mice and C57BL/6 wild type mice. We hypothesized that dendritic cells (DCs) from C57BL/6 IL-10/- mice have a greater ability to adequately phagocytize the bacteria for elimination in the context of the innate immune response and antigen presentation in an adaptive immune response. We tested this hypothesis by comparing the function of dendritic cells from C57BL/6 IL-10/- mice and C57BL/6 wild type mice when infected with C. jejuni (11168). Dendritic cells were obtained by treating harvested bone marrow stem cells with rmGM-CSF, a cytokine that causes the bone marrow cells to differentiate into dendritic cells. A gentamicin killing assay was then performed to determine the extent of bacterial internalization by the dendritic cells, an essential step for the innate immune response, antigen-presenting functionality, and T-cell and B-cell activation. Further studies will be needed to elucidate the mechanisms of how the immune system response to this bacterium results in the autoimmune reaction cause GBS pathology.