#### Abstract

To minimize the length of a planar network, we can build a Steiner minimal tree that is, a tree consisting of the original network points, as well as additional, strategically-placed (Steiner) points. Chung, Gardner and Graham [2] investigated building Steiner trees over grids of unit squares. We generalize their ideas to grids of rhombuses, and show that two near-optimal Steiner trees exist for each grid, one built from Steiner trees over rhombuses and one built from Steiner trees over isosceles triangles. Further, we conjecture that for grids with an odd number of layers, only the small angle of the rhombus drives which tree is shorter; for grids with an even number of layers, the small angle is the most important factor in determining which scheme to use.

#### Disciplines

Mathematics

#### Recommended Citation

Voelker '97, Meta M., "Steiner Trees Over Generalized Checkerboards" (1997). *Honors Projects*. 8.

https://digitalcommons.iwu.edu/math_honproj/8