Submission Type
Event
Expected Graduation Date
2018
Location
Center for Natural Sciences, Illinois Wesleyan University
Start Date
4-18-2015 9:00 AM
End Date
4-18-2015 10:00 AM
Disciplines
Physics
Abstract
Particle trapping is a state-of-the-art technology, which already a powerful tool for scientists working with micro- and nano-components. Much interest now revolves around length scales where quantum mechanical effects become pronounced. Quantum mechanics forms our only framework for understanding many problems in solid-state physics (e.g., magnetism), and is playing an ever more important role in applied chemistry, biochemistry and many other areas. Trapping technologies provide a test bed for systematic exploration of fundamental paradigms, offering enhancements to our understanding of key mechanisms and, perhaps, opportunities for quantum information technology. We have assembled a Newtonian Lab demonstration trap, demonstrating key principles of an ion trap, as a first step toward more advanced particle-trapping technology. This system utilizes a low-frequency alternating voltage to trap charged micro-particles. We have confirmed that trapping has occurred, by scattering visible laser beams off the trapped particles. Our next step is to explore designs for a hybrid combination of high-frequency optical tweezers with the sort of low-frequency electrostatic trap we have demonstrated, with the goal of stabilizing particles trapped in low-pressure atmospheres, where it may be possible to achieve cooling towards the quantum mechanical ground state of at least one degree of freedom.
Included in
Demonstration of Ion Trap Principles
Center for Natural Sciences, Illinois Wesleyan University
Particle trapping is a state-of-the-art technology, which already a powerful tool for scientists working with micro- and nano-components. Much interest now revolves around length scales where quantum mechanical effects become pronounced. Quantum mechanics forms our only framework for understanding many problems in solid-state physics (e.g., magnetism), and is playing an ever more important role in applied chemistry, biochemistry and many other areas. Trapping technologies provide a test bed for systematic exploration of fundamental paradigms, offering enhancements to our understanding of key mechanisms and, perhaps, opportunities for quantum information technology. We have assembled a Newtonian Lab demonstration trap, demonstrating key principles of an ion trap, as a first step toward more advanced particle-trapping technology. This system utilizes a low-frequency alternating voltage to trap charged micro-particles. We have confirmed that trapping has occurred, by scattering visible laser beams off the trapped particles. Our next step is to explore designs for a hybrid combination of high-frequency optical tweezers with the sort of low-frequency electrostatic trap we have demonstrated, with the goal of stabilizing particles trapped in low-pressure atmospheres, where it may be possible to achieve cooling towards the quantum mechanical ground state of at least one degree of freedom.