Publication Date

January 2014

Comments

The is published by Elsevier, http://www.sciencedirect.com/science/article/pii/S0195669814000821.

Abstract

Using the basic fact that any formal power series over the real or complex number field can always be expressed in terms of given polynomials {pn(t)}{pn(t)}, where pn(t)pn(t) is of degree nn, we extend the ordinary Riordan array (resp. Riordan group) to a generalized Riordan array (resp. generalized Riordan group) associated with {pn(t)}{pn(t)}. As new application of the latter, a rather general Vandermonde-type convolution formula and certain of its particular forms are presented. The construction of the Abel type identities using the generalized Riordan arrays is also discussed.

Disciplines

Mathematics

Included in

Mathematics Commons

Share

COinS