Sequences of Numbers Meet the Generalized Gegenbauer-Humbert Polynomials

Publication Date

August 2011

Comments

ISRN Discrete Mathematics is published by Hindawi Publishing Corporation, http://www.hindawi.com/journals/isrn/.

Abstract

Here we present a connection between a sequence of numbers generated by a linear recurrence relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many new and known formulas of the Fibonacci, the Lucas, the Pell, and the Jacobsthal numbers in terms of the generalized Gegenbauer-Humbert polynomial values are given. The applications of the relationship to the construction of identities of number and polynomial value sequences defined by linear recurrence relations are also discussed.

Disciplines

Applied Mathematics | Mathematics

Share

COinS